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It has been shown that freestream velocity disturbances may cause substantial aeroelastic
and aerothermal loading on a hypersonic flight vehicle due to the inadvertent formation of shock
waves and rapid changes in air density. We present here a novel state estimation framework
to determine and predict the air density acting on a hypersonic flight vehicle. Our approach
is comprised of a learning algorithm that updates the air density estimate given observations
made by conventional inertial measurement unit sensors earlier on in flight, while exploiting
known maximum bounds on acceleration changes and angular rates in the given flight regime.
The primarymotivation for this research is to enable predictivemaneuvering so as to anticipate
density perturbations, thereby alleviating aerothermal loads. Previous related work has seen
many applications in the field of low speed aeronautics, relying on Kalman andmoving average
window filters, which suffice only in the case of low frequency changes, require heuristics
in tuning them, and are not applicable to the high frequency flow perturbations that are
experienced in hypersonic flight. We demonstrate the proposed approach by applying it to the
entry trajectory of theMars Phoenix lander. The atmospheric properties obtained by applying
our methodology to this test case are validated using previous trajectory reconstruction efforts
and the NASA Mars-GRAM 2010 atmospheric model, allowing for validation of the estimate
atmospheric properties generated by the present algorithm.

Nomenclature
Latin symbols

A = aerodynamic reference area
a = linear acceleration acting on the vehicle
c = cosine
CA = force coefficient in the axial direction
C = constraint matrix
t0 = epoch time
F = force acting on the vehicle
f = generic function
g = gravitational acceleration
h = sampling period, or height
H = scale height
I = identity matrix
k = time index
m = prediction window length, or mass
n = (filtering) window length

N = number of filtering windows
p = pressure
P = probability function
r = radius
s = sine
t = time
V = velocity
R = rotation matrix
R = set of real numbers
x = truth vector
x∗ = filtered truth vector
x∗ = concatenated filtered truth vector
X = admissible solution set
y = observation vector
Z+ = set of positive integers
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Greek symbols

α = angle of attack
β = sideslip angle
ε = bound
ε = gradient bound
θ = pitch angle
ϑ = azimuthal angle
θ = parameter vector
µ = gravitational parameter
ρ = density
σ = standard deviation
φ = roll angle
ϕ = polar angle
ϕ = lagged output data vector
ψ = yaw angle
ω = planetary polar angular velocity
Ω = body angular velocity

Subscripts

a = referenced to wind, or prediction parameter
aero = effect due to aerodynamics
body = referenced to body frame
bulk = effect due to atmospheric bulk motion
gust = effect due to gusts
inert = referenced to inertial frame
i = axis index
r = radial axis
wind = effect due to all winds

I. Introduction
Hypersonic flight vehicles (HFVs) are known to be susceptible to flow field disturbances caused by far-field changes

in pressure distribution [1, 2]. In operational flight, conventional atmospheric models rarely provide an accurate model
for the rapid changes in both the wind field and air density [2, 3]. Harpold and Gavert [4] and Hale et al. [2] note
that significant fluctuations in the angle of attack program of the Space Shuttle Orbiter were measured due to rapid
changes in air density, which can be mitigated provided that accurate predictions of density measurements are available.
Sustained offsets in the angle of attack can result in the vehicle drifting off of its intended course, thereby over- or
undershooting its target destination [5]. To mitigate these effects, many modern atmospheric entry guidance schemes
include some model of the density profile to aid in predictive maneuvering during the hypersonic entry phase of a
vehicle [6, 7]. Given the fact that atmospheric parameters are known to drastically change as a function of time and
position [8, 9], it is often meaningless to utilize the same static air density profiles in a multitude of settings. In the case
of the Mars atmosphere, even the highest fidelity models, such as the Mars Global Reference Atmosphere Model 2010
(Mars-GRAM 2010), fail to predict density variations in a number of reported cases [10, 11]. To mitigate this problem,
Ding et al. [12] propose the use of a flush air data sensing (FADS) system to aid in the estimation of air data parameters
experienced in-flight by a HFV. This approach has been used to great success in many experimental HFVs [13–15], but
the data acquired by these sensors requires unbiased noise reduction i.e., filtering. In recent years, HFVs have witnessed
an additional development in the field of wind estimation, namely the use of a FADS system, coupled with an inertial
measurement unit (IMU) [16].

In general, approaches to density estimation are almost always subsumed in wind estimation schemes, which can
be classified in three different categories: a vectorial approach assuming in-plane winds, an approach based on the
dynamic response of a flight vehicle, and a combined approach utilizing air data from FADS and the dynamic response
[16, 17]. The first of these approaches is heavily reliant on airspeed measurements, as the wind speed is determined
by subtracting the ground velocity from the airspeed vector [18–22]. Utilizing this data is cumbersome in the case
of HFVs, in part due to the uncertainty of airspeed determined by Pitot tubes in hypersonic flight regimes [23, 24].
Major drawbacks in such schemes, additionally, are rooted in the fact that they rely chiefly on Kalman filters and
moving average window filters, which require manual, heuristic, tuning and have previously been optimized for slow
variations in wind field [25, 26]. The second approach lies in utilizing inertial measurements made by the autopilot
sensors [27]. The primary limitation of using the dynamic response of a vehicle to determine the local wind field is
due to the inherent modeling errors in the idealized mathematical model of the vehicle [17, 28]. A possible solution is
to determine the vehicle model from flight data, as has previously been in done in a posteriori analysis (e.g. [29]);
this does, however, require expensive and time-consuming testing campaigns that still leave significant uncertainties in
the derived aerodynamic coefficients [30–32]. The final approach, which combines FADS and IMU data, features a
number of different implementations. Baumann et al. [14] use complementary filters to smooth the low-frequency FADS
flow angles using high-frequency IMU data, only removing noise but not increasing overall prediction accuracy [12].
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Karlgaard et al. [16] apply a posteriori fitting of the FADS and IMU data using nonlinear weighted least-squares. While
most approaches are concerned either with the wind vector or thermodynamic parameters, for full state approaches
that estimate both, the Kalman filter seems to be the most commonly used [19, 33, 34]. In this case, however, Kalman
filters have the inherent disadvantage of having complex Jacobian matrices that frequently rely on computational fluid
dynamics (CFD) simulations, which introduce additional model error [12]. Other approaches are concerned only with
the calibration of FADS systems using inertial and meteorological data [35–37], or a posteriori analysis of flight data
[33, 34].

As more precise guidance requirements are imposed on modern HFVs, it will prove necessary to determine,
on-the-fly, the local atmospheric conditions experienced by the vehicle. To tackle this issue, we propose in Sec. II a novel
noise reduction framework known as change-conscious maximum likelihood estimation (CCMLE), which allows for
efficient online filtering of signals produced through a nonstationary process [38]. Contrary to previous work, CCMLE
requires solely knowledge of the maximum expected rate of change of the time series under consideration thus allowing
for an intuitive approach to filtering. The maximum rates of change are often known prior to a mission’s execution e.g.,
from engineering specifications or simulations. A novel contribution in this regard is that no knowledge of the HFV
dynamics beyond simple inertial properties is required to allow for meaningful estimation. Using this filtered data,
we present in Sec. III techniques to compute the approximate wind-relative velocity vector, aerodynamics angles and
local atmospheric thermodynamic properties, pressure and density. Since our filter relies on a given number of samples
to be known before producing an estimate of the true signal, near-term predictions must be produced to guarantee
continuity of important parameters; we propose a simple autoregressive model for m-step-ahead predictions as described
in Sec. IV. All of these techniques are then applied to the Mars Phoenix lander mission in Sec. V, demonstrating the
online trajectory and atmosphere reconstruction approach presented in this work. We compare our results with the work
of Withers and Catling [39], Karlgaard and Tynis [40] and an independently produced atmospheric profile using the
Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010, [41]). Overall, we observe good agreement
between our atmospheric density estimates and those from [39, 40] and the Mars-GRAM 2010 model. Conclusions are
drawn in Sec. VI, accompanied by a discussion of the results and future work.

II. Signal Noise Reduction
Before we can consider estimating the atmospheric properties encountered in a vehicle’s flight, it is necessary to

consider the data that will be used in estimating these parameters. We will mainly focus on inertial measurement unit
(IMU) sensor signal, which often have significant noise associated with them [30, 42, 43]. Since we wish to estimate
the true signals (i.e., filter out the noise) before we using them to estimate the atmospheric parameters, it becomes
necessary to consider which unbiased filtering techniques produce signals suitable for atmosphere reconstruction. In the
following, we will review previous noise reduction schemes that have been employed in reconstructing hypersonic entry
trajectories, after which we present our own filtering methodology, known as change-conscious maximum likelihood
estimation (CCMLE). Our discussion will focus chiefly on the properties of past schemes when used in an online setting,
which demands that computational strain stays low and samples are quickly processed to produce atmospheric estimates.
The proposed CCMLE scheme is formulated for such an online setting, as described hereafter.

A. Previous approaches
Given the need to efficiently and effectively filter time series that are generated by various (noisy) sensors, it becomes

necessary to consider suitable online signal processing schemes; before considering these, however, it is instructive to
review current trends in offline filtering techniques. In offline trajectory reconstruction, the Kalman filter (KF) and its
derivatives, the extended Kalman filter (EKF) and unscented Kalman filter (UKF), have been extensively analyzed in
recent years [30, 34, 44, 45]. While the classical discrete-time Kalman filter could be suitable for online use during
entry, descent and landing (EDL) considering its performance, it is rarely used in practice due to its linear nature and the
highly nonlinear properties of the system dynamics, causing EKF and UKF to be the preferred alternatives [30]. In EKF
and UKF, the nonlinear system dynamics are linearized about the current state, and these local linear models are then
used to produce filtered estimates. UKF differs from EKF, in that the state transition matrix, which is a Jacobian matrix,
need not be calculated analytically, and is therefore more efficient [30]. One major drawback of utilizing any of the
Kalman filters, lies in the necessity of a complete description of the system dynamics, which requires the construction
of a detailed aerodynamic database and determination of the dynamic and static aerodynamic properties of the vehicle
at various flight conditions and orientations [44, 46, 47]. Even after such expensive and time-consuming efforts, an
appreciable uncertainty in the vehicle’s aerodynamics still remains at the time of EDL [48]. As a result, the Kalman filter
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suffers from a lack of robustness stemming from mounting plant–model mismatch, making it ill-suited for application in
real-life systems operating under unforgiving circumstances.

Turning to so-called ‘model-free’ filters, we find that complementary filters are often used in aerospace applications
[49, 50]. These filters differ from Kalman filters, as the complementary filter directly combines two or more signals
exhibiting low- and high-frequency noise are combined, in the ideal case producing a pure additive white noise signal
that is filtered using low- and high-pass filters [49]. Examples of these signals in aerospace applications are descent
rates determined from inertial measurements and barometric altimeters, and attitude changes determined from linear
accelerations and angular rates measured by gyroscopes [49, 50]. While this approach is computationally tractable, and
in simple cases does not require explicit knowledge of the system dynamics, the often fixed nature of the filter gains
implies that filter tuning is purely heuristic, and is not receptive to changes in the frequency domain composition of the
signal [51]. Another model-free filtering approach found in trajectory reconstruction literature is the moving average
window (MAW). Here, the data are smoothed by taking the value of an element to equal the average of a number of
samples that lie adjacent to it, i.e. a ‘window’. This effectively smoothens the data and suppresses significant gradients
from appearing. However, Withers and Catling [39] state that the MAW filter produces biased estimates for linear
accelerations experienced during entry, and requires correction to account for the exponential variation of atmospheric
density and its multiplicative effects on acceleration. To produce this correction, both a short and long window must be
applied, after which the correction is computed by a function involving natural logarithms and powers; in an online
setting, this would prove undesirable as it requires the evaluation of computationally demanding functions.

Bearing the above discussion in mind, we propose here a filtering approach adapted from the work of Ornik and
Topcu [52]. While the idea of using bounds on the known rate of change of a time-varying function to produce a
maximally likely function comes from [52], the approach of [52] applies that idea to Markov decision processes, as
opposed to the more general signals that this paper considers. Our approach requires minimal engineering data on the
operational constraints of the vehicle, producing online filtered results from any given time series in a batched manner,
i.e. the filter is applied after a given number of samples (a window) is accumulated. In the following we will expand on
this approach, termed change-conscious maximum likelihood estimation (CCMLE).

B. Change-conscious maximum likelihood estimation (CCMLE)
Before stating the mathematical underpinning of the CCMLE [52] methodology, let us consider the following

problem: given a noisy signal, and prior knowledge on the dynamics of the true signal, how can we recover an estimate
of the true signal? Consider a time series (e.g., a noisy signal) y containing n samples (y ∈ Rn). We assume that
each element of this time series is independent and identically distributed (i.i.d.), and is corrupted by a zero-mean
Gaussian noise of variance σ2, which holds over all n samples. Since we will consider a process that is not governed by
a stationary (unchanging) noise process, we will assume the time series from which we sample these n to be by a weakly
stationary process (i.e., the first two moments of the noise process, mean and variance, are constant) [53]. With this
assumption, we can assume that the n samples under consideration here are sampled from a stochastically stationary
process, which is instrumental to this approach. In practice, this is achieved by either considering high-frequency data
sources with frequencies in excess of those of the (noise) process time scale, or we consider processes with a large
enough time scale during which samples are considered to originated from an unchanging stochastic process [53].

By assuming any ‘window’ of n samples that is generated by a stochastically stationary process, we will show that
CCMLE produces the most probable estimate of the samples that belongs to some admissible solution set X . This
solution set imposes constraints on the problem that allow us to incorporate knowledge of the maximum relative rate of
change of the time series, allowing us to pose the underlying optimization problem as a convex optimization problem.
Note that the need for windows does not only stem from the fact that the process must be stochastically stationary over
the given samples considered, but also because all data are filtered in one pass (a ‘batch process’), as opposed to in a
recursive manner. Thus, we must wait for a number of samples to be accumulated before they can be filtered and a
filtered result is obtained; since we wish to compute estimates of the density online in a timely manner, it is necessary to
segment the data and filter smaller windows to quickly obtain a filtered signal without incurring a significant lag.

1. Optimization problem statement
Given a set of observations in the form of a time series, y ∈ Rn, we wish to find the set of truths x ∈ Rn such that the

likelihood of correctness is maximized, while the truths belong to a domain X that satisfies a set of linear constraints.

max
x∈X
P(y | x). (1)
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Assuming that observations yi are independent and identically distributed random variables, we can equivalently
express the maximization problem as:

max
x∈X
P(y | x) = max

x∈X

n∏
i=1
P(yi | xi). (2)

Now, we assume that the random variables yi have a normal distribution centered around the truth with constant
standard deviation σ, i.e. yi ∼ N (xi, σ2), yielding:

max
x∈X

n∏
i=1
P(yi | xi) = max

x∈X

n∏
i=1

1
√

2πσ2
exp

[
−
(yi − xi)2

2σ2

]
. (3)

Taking the logarithm, which is a monotonically increasing function and thus yields the same maximum, and noting
that 1/

√
2πσ2 is constant, we find:

max
x∈X
P(y | x) = max

x∈X
log


n∏
i=1

1
√

2πσ2
exp

[
−
(yi − xi)2

2σ2

] = max
x∈X

n∑
i=1
−
(yi − xi)2

2σ2 + n log

(
1

√
2πσ2

)
. (4)

We may express this as a minimization problem, giving:

max
x∈X
P(y | x) = min

x∈X

n∑
i=1
(xi − yi)

2. (5)

Expressing this as a bounded variable least squares problem, we find:

min
x∈X
‖x − y‖22 . (6)

This problem is a quadratic programming (QP) problem, which is amenable to efficient numerical solution [54].
Solving for the value x∗ ∈ X that minimizes this norm produces the filtered CCMLE time series.

2. Specification of admissible solution set X
In defining the appropriate domain X , we wish to bound the relative change of the truths that we obtain by solving

the CCMLE problem; these bounds will originate from knowledge of the underlying physics. In particular, we consider
the maximum absolute rate of change between one sample and its previous and subsequent sample. As an example, in
the case of a velocity time series, this would be a maximum feasible acceleration, and may be produced from engineering
specifications or simulations. Naturally, these bounds are scaled by the sampling period that was applied in obtaining
the time series, and may be related to a known continuous time rate of change as follows.

It can be shown that for a time series with constant sampling period, the maximum bound will be equal to the
maximum gradient in continuous time multiplied by the sampling period. The bounds are stipulated as part of the
admissible solution domain X . Consider the vector of bounds ε ∈ Rn−1:

ε =


ε1

ε2
...

εn−1


. (7)

The goal is to find x, such that relative rate constraints |xi − xi−1 | ≤ εi−1 for i ∈ [2,n] are satisfied, while x is as close
as possible to y (see Eq. 6). We can thus express the constraints imposed by admissible solution set X , by subjecting
the minimization problem of Eq. (6) to the following inequality constraint:

Cx � ε∗, (8)

where C ∈ R(2n−2)×n is a matrix that maps x such that it satisfies the inequality constraints introduced above using a
linear inequality:
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C =



0 · · · · · · · · · · · · · · · 0
1 −1

−1 1
1 −1

−1 1
. . .

. . .
. . .

1 −1
−1 1

0 · · · · · · · · · · · · · · · 0



, (9)

where the blanks denote zeros, and the first and last row are identically zero; these rows are included for a more
coherent structure of the modified bounds vector ε∗ ∈ R2n−2, which now takes the form:

ε∗ =
[
ε1 ε1 ε2 ε2 · · · εk εk · · · εn−1 εn−1

] Ë
. (10)

3. Concatenation of filtered windows
Assume the n-element observation time series is part of a greater time series, say a time series consisting of N

number of n-element windows, as could be the case for a continuous stream of data. This is based on two reasons: one
lies in the fact that longer windows will result in increased computational complexity, and become intractable to solve
in a short time on modest hardware; the second stems from the fact that we wish to have access to the filtered time
series without waiting for data to be accumulated, and additional data cannot be added when the filter is running. Now,
ensuring that the concatenated filtering solution, x∗ = (x∗1, . . . ,x

∗
N ), belongs to the compounded admissible solution

set, X1 ⊕ . . . ⊕XN , becomes a nontrivial issue. As such, it we propose the following approach: the first unfiltered
sample is set to be equal to the first filtered sample through an equality constraint (i.e., x1 = y1, corresponding to ε1 ≡ 0
in the above formulation), allowing for the last filtered sample of one window to be taken as the first sample of the
next window in practical applications; we employ this approach in subsequent sections. Provided that the sampling
rate is high enough, drastic changes between windows on the scale of single elements should not be present, therefore
warranting this approach.

4. Numerical solution approach
As could be seen in the foregoing, Eq. (6) presents a constrained quadratic programming (QP) problem [54]. In

recent years, many advances in the field of convex and quadratic programming have taken place [55]. This consideration
forms an additional advantage to this methodology, as accurate estimates are obtained without the need for heuristics or
intensive routines.

In solving the windowed filtering problem in an online setting, we have utilized the CVXGEN software by Mattingley
and Boyd [56]. CVXGEN allows for a convex quadratic program to be defined, after which it generates custom
library-free and virtually branchless C code, with the explicit intention of its utilization in embedded real-time application
[56]. We have successfully leveraged the sparsity of our inequality constraints matrix, allowing for window sizes in
excess of 100 samples to be processed without causing deficiencies in the numerical efficiency of the routines in use.
CVXGEN makes use of fully iterative procedures, and solves quadratic programming problems using a primal-dual
interior point methods, and converges within well under ten iterations for the signals we have studied [56, 57].

Utilization of the generated C code is straightforward, and solely requires definition of the signal elements and
bounds vector. While no explicit attempts have been made here at quantifying the (expected) performance on flight
hardware, studies have shown that current QP solvers perform well within the microsecond range in industrial settings
and produce reliable results [58].

III. Equations of Motion
Having developed a methodology to filter the time series obtained by our sensors, we now wish to use the filtered

IMU signals to produce estimates of the atmospheric properties. This requires both trajectory reconstruction, and
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atmosphere reconstruction, as shown hereafter. We shall base our discussion around trajectory reconstruction approaches
as applied in offline settings, allowing for adaptation to online processes. Such methods are widely applied in the analysis
of inertial measurements acquired from planetary entry vehicles [39, 44, 59–61]. Below, we present the equations
of motion including planetary motion in a planet-fixed rotating coordinated frames, which are then integrated after
transformation to an inertial frame [59]. Following the exposition of Withers et al. [59], we shall then present a tested
approach to attitude constraining. Since there are a number of ways of determining the vehicle attitude in the inertial
frame, it is necessary to define a datum and means of determining the rate of change of this attitude, the process of
which is known as attitude constraining. This step is then followed by atmosphere reconstruction. In this work, we
blend the previously a posteriori atmospheric reconstruction procedure with the attitude determination step, thereby
allowing for atmospheric estimates to be acquired in real time.

A. Motion using accelerometers and gyroscopes
In recent years, virtually all hypersonic vehicles have had linear accelerometers and gyroscopes onboard [30]. In

contrast to legacy vehicles, which required extensive use of aerodynamic databases to determine their wind-relative
trajectory, the presence of a three-axis gyroscope allows for direct estimation of the wind relative attitude [59]. This
methodology precludes the need for an aerodynamic database, and is often used to validate the accuracy of the estimated
aerodynamic characteristics of a vehicle post-flight [39, 44, 45, 48, 59].

1. Angular motion
We present the following attitude-tracking formulation utilizing gyroscope measurements, based on the work of

Withers et al. [59]. Contrasting to the results in [59], we have chosen to employ an intrinsic zyx (yaw-pitch-roll) rotation
for our formulation, as outlined in [62, §11.10]:

Ûψ =
Ωy,body sin φ +Ωz,body cos φ

cos θ
(11a)

Ûθ = Ωy,body cos φ −Ωz,body sin φ (11b)

Ûφ = Ωx,body + tan θ
(
Ωy,body sin φ +Ωz,body cos φ

)
. (11c)

Here, ψ, θ, φ (yaw, pitch, and roll, respectively) represent the proper Euler angles between the inertial frame and the
body (vehicle) frame. The body frame Oxyz,body has xbody as its roll axis, ybody as its pitch axis, and zbody as its yaw axis.
Note that this differs from [59], but is in line with more recent trajectory reconstruction efforts and coordinate frame
conventions [34, 44, 45, 63]. The Ω·,body’s represent the angular rates (velocities) about these principal body axes, and
are frequently directly output by the inertial measurement after integration of the angular accelerations. The body frame
is shown in Fig. 1:

Fig. 1 Body coordinate system [44]
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To convert the linear accelerations observed in the body frame, aaero,body, to the inertial frame, we construct the
following rotation matrix, based on the use of proper Euler angles in a roll-pitch-yaw sequence [64, App. A.1]:

Rinert
body =


cψ 0 sψ
0 1 0
−sψ 0 cψ



cθ −sθ 0
sθ cθ 0
0 0 1



1 0 0
0 cφ −sφ
0 sφ cφ

 =


cθcφ −cφcψsθ + sφsψ cψsθ sφ + cφsψ
sθ cθcφ −cθ sφ
−cθ sψ cψsφ + cφsθ sψ cφcψ − sθ sφsψ

 , (12)

where c· and s· denote the cosine and sine of the subscript angle, respectively. The inverse rotation, Rbody
inert , coincides

with the transpose of the above rotation, i.e. (Rinert
body)

Ë. We find the aerodynamic accelerations in the inertial frame as
follows:

aaero,inert = Rinert
bodyaaero,body. (13)

2. Inertial acceleration
Frequently, knowledge of the vehicle’s inertial position, velocity and attitude are available at the entry interface is

available, and is determined using star trackers, Doppler ranging, or propagation of its state using Keplerian mechanics,
or a combination of these [39, 44, 45, 59, 63, 65]. As a result, this instantaneous position is used as the datum for
subsequent propagation, and can be related to other inertial reference frames. In order to preclude cumbersome
corrections for Coriolis effects and centrifugal forces, we shall consider exclusively the inertial state, which may be
transformed at a later stage if desired; this limits the number of computations required substantially [59].

To compute the inertial accelerations, we must add the gravitational acceleration g to the aerodynamic acceleration
obtained by the accelerometers. While it is possible to utilize spatial (or spatio-temporal) gravitational models based on
spherical harmonics (e.g., MRO110C [66]), we shall consider solely an idealized spherical planetary model in an effort
to alleviate computational strain, yielding an inverse-square law gravity field. As such, the gravitational acceleration is
only dependent on the radial distance from the planet’s center of mass, giving the following gravitational model:

g(r) =
µ

r2 =
GM
r2 , (14)

where µ is the gravitational parameter of the celestial body, which is equal to the product of the universal gravitational
constant G, and the mass of the greater body M . Note that it would have been possible to account for oblateness effects
(J2-effects), but this is easily added to the model if the reader so wishes.

This radial acceleration can be converted to the Cartesian inertial frame using the following transformation:

g(x, y, z) = −


sin ϑ cos ϕ
sin ϑ sin ϕ

cos ϑ

 g(r), (15)

where Orϑϕ denotes the inertial spherical coordinate frame. Summing all accelerations, we obtain:

ainert = g + aaero,inert. (16)

Since the center of mass acceleration of the vehicle is Üx = ainert, integrating both sides of the differential equation
twice over time will yield the current vehicle position and velocity in the inertial frame, as propagated from the initial
(entry) state discussed before.

Having obtained the vehicle’s inertial state and attitude, we can use these results to reconstruct the atmospheric
profile, as presented in the next subsections.

B. Atmosphere reconstruction
To determine the atmospheric properties, we must first find the magnitude of the wind-relative velocity. Using the

wind-relative velocity vector, we may both define the aerodynamic orientation and the density profile, as outlined below.
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1. Wind-relative velocity
While determining the wind direction is straightforward, estimating the wind-relative velocity requires some more

insight. Since we are only working with the inertial state, we must account for the bulk atmospheric motion due to the
body’s rotation, since that makes for the greatest discrepancy between the relative and absolute velocity. In essence, we
decompose the inertial velocity vector into three constituents:

Vinert = Va + Vwind,bulk + Vwind,gust. (17)

The bulk atmospheric motion Vwind,bulk is solely a function of the planetary rate of rotation and the vehicle’s location,
and is computed as [59]:

Vwind,bulk = ωẑ × x = ω


−y

x
0

 , (18)

where ω denotes the angular velocity of the celestial body, ẑ denotes the unit vector in z-direction in the inertial
frame, and x denotes the inertial position vector. Since in practice external measurements are required to determine the
wind field we shall assume the gusts to be insignificant. This assumption holds throughout the hypersonic regime [67].
Therefore, we find:

Va ≈ Vinert − Vwind,bulk. (19)

The above model incorporates the classical assumption that a planet’s atmosphere rotates with the same velocity
as its core, while extending it with the presence of gusts that are not accounted for in classical formulations [59, 68].
King-Hele and Allan [69] have shown that such an assumption of mean bulk motion holds for the uppermost strata of
the Earth’s atmosphere, and it would serve as a means of separating a near-constant mean wind from changing gusts, as
attempted in the above formulation.

While the body-referenced aerodynamic acceleration already provides us with the direction of the resultant
aerodynamic force, it is useful to compute the aerodynamic angles, namely the angle of attack (α) and the sideslip angle
(β), which dependent on the body-relative (incident) wind direction. Let us define the unit vector in the direction of the
wind-relative velocity in the body frame as:

α =
Va,body

Va,body



 . (20)

Note that we cannot immediately apply the body-relative acceleration (aaero,body), as the direction of the resultant
vector does not correspond to the wind-relative velocity vector per se. Instead, using the definition of the wind-relative
velocity, we find it provides an accurate description of the aerodynamic angles [19, 70]. From the orientation of α and
the body x-axis, the aerodynamic angles can be determined as described in, e.g. [70].

2. Atmosphere in the rarefied flow regime
Since the acceleration time series are measured in a vehicle-relative frame, only accelerations due to aerodynamics

are observed, given a pure (or filtered) time series. It is then straightforward to relate the observed acceleration to the
dynamic pressure and reference area as follows [71]:

Fx,aero = max = −
1
2
ρV2

a ACA. (21)

We are interested in finding air density ρ. Given are the reference area A (often defined as the largest cross-sectional
area of the vehicle [59]) and the mass of the vehicle. The velocity Va is the magnitude of the wind-relative velocity,
Va ≡



Vinert − Vwind,bulk


, where Vinert is the inertial velocity and Vwind,bulk the atmospheric bulk velocity, and CA is the

axial aerodynamic force coefficient, which is a function of the wind-relative orientation and flow environment of the
craft.

As a first approximation, we may assume the HFV to be aligned with the wind vector, taking the angles of attack and
sideslip to be α = β = 0, thereby making CA only a function of the flow conditions. If we only consider the upper
strata of the atmosphere, where rarefied flow is in effect, we may approximate the coefficient of axial force by means of
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classical Newtonian theory, which yields CA ≈ 2 for a blunt body [72]. From Newtonian theory, a flat plate in rarefied
crossflow will have an axial drag coefficient of 2, and is traditionally taken as a first approximation in preliminary
aerodynamic design [72]. Withers et al. [59] have remarked that this forms an excellent approximation for many entry
vehicles, and our own simulations have supported this claim as presented later. Now, it is possible to approximate ρ as

ρ ≈ −
m

AV2
a

ax . (22)

3. Atmosphere in the continuum flow regime
Given the fact that Newtonian theory only holds in a fully rarefied flow regime (i.e., Knudsen number Kn ≥ 2×10−2),

the above model’s validity is short lived; as the vehicle passes the upper layers of the atmosphere, greater discrepancies
are found, since the axial drag coefficient starts to decrease as the flow starts to transition to a continuum flow [47].
Therefore, an alternative relation is needed. Following the treatment in [73, pp. 2-1–2-2], we consider the buoyancy
equation:

dp
dh
= −ρg, (23)

where p is the pressure and h is the altitude. From the equation of state, we may define a scale height H ≡ RT/g,
where T is the temperature and R is the specific gas constant, and g is the gravitational acceleration. If we assume the
atmosphere to be isothermal, we may find the rate of change of pressure with time to be [33]:

Ûp =
dp
dt
= −ρg

dh
dt
= −ρgVr , (24)

where Vr is the radial component of velocity in the local (instantaneous) radial coordinate frame; we have assumed
density to be approximately constant. In order to find the time rate of change of density, we will need the equation of
state of an ideal gas [71]:

p = ρRT . (25)

Then, it follows that the time rate of change of density will be approximately equal to [30]:

Ûρ =
dρ
dt
=

dp
dt

dρ
dp
=

dp
dt

1
RT
= −ρgVr

ρ

p
= −

ρ2gVr

p
. (26)

4. Applicability of the atmospheric models
We now consider the transition between the two flow regimes so as to determine which model to use. For a Mars

and Earth atmosphere, any altitude above about 7.5 scale heights can be considered to be rarefied, and Newtonian theory
forms an adequate approximation [73, 74]. For Earth, this translates to around 60 kilometers in altitude, while on Mars
this is around 80 kilometers. As such, we propose to employ the acceleration-based formulation for altitudes above this
threshold, allowing for adequate density estimates to be obtained. With these estimates, it is then possible to propagate
the density and pressure profile through the above rate of change equations by means of numerical integration and
knowledge of the inertial velocity. There remains, however, one problem: a datum for pressure has not been given.
Withers et al. [59] propose to utilize the hydrostatic equation to produce an estimate for the pressure at the start of the
density profile (r = r0), yielding the following approximate relation:

p(r0) = ρ(r0)g(r0)
(

d(ln ρ)
dr

��
r0

)−1
. (27)

Considering the fact that we cannot afford to assume the pressure to be zero, since this will produce a singularity in
Eq. (26), we can use Eq. (27) to produce the integration constant needed to propagate the pressure, since fluctuations in
ax cause significant changes in ρ when obtained using Eq. (22). The derivative found in the function above can be very
sensitive to noise. Therefore, we propose an alternative method that assumes prior knowledge of the atmospheric scale
height H:

p(r0) ≈ ρ(r0)g(r0)H. (28)
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In practice, the scale height is almost always known [73]. With this knowledge, we propose to reconstruct the
atmosphere in real-time, adhering to the following procedure:

Step 1) Filter the axial accelerations using CCMLE.
Step 2) Compute the approximate density from the inertial velocity and filtered angular acceleration, assuming

CA ≈ 2 (see Eq. (22)).
Step 3) From the density, compute a datum pressure value using Eq. (28).
Step 4) Propagate the pressure by integrating the value from Eq. (24), and keep computing the density using

Eq. (22).
Step 5) Below some specified altitude below which the rarefied flow assumptions fail to hold (e.g., h ≤ 7.5H),

propagate the density by integrating the result from Eq. (26).
Having predicted the vehicle’s attitude, as well as the atmospheric conditions it experiences, we now wish to obtain

predictions of the atmospheric conditions. These predictions will be updated as more data become available through
filtering, and will allow for the current atmospheric conditions to be known even when the filter is still accumulating the
current n samples. The next section presents a general formulation that allows any time series to be predicted m-steps
ahead in time.

IV. Near-Term Prediction
As mentioned previously, there is an appreciable delay between the accumulation of a sample window, the time it

requires to filter the data, and the population of the next window. Consider a sampling rate of fsample = 200 Hz, which is
representative of modern inertial measurement units [39, 44, 45, 59]. In this case, considering a window size of 100
elements, we would have to wait 500 milliseconds for samples to accumulate. A larger window size, or a windowless
approach where all previous data are analyzed in one optimization problem given by Eq. (6), not only increases the time
that is required to sample it, but also increases computational complexity significantly [54]. Withers and Catling [39]
duly note that such time scales are well below those of atmospheric processes, allowing us to employ a linear prediction
scheme to determine near-term atmospheric properties as the CCMLE algorithm is running. These quantities could be
used in model predictive control, as is frequently done in terrestrial applications [75, 76]. Given the short time frames
and the assumed stochastic stationarity of the processes, we propose the use of a linear discrete-time time-invariant
autoregressive (AR) model [77–80].

The general the general structure of an autoregressive system is denoted as follows [77, 80]:

y(k) + a1y(k − 1) + a2y(k − 2) + . . . + ana y(k − na) = ξ(k), (29)

where {y(k)} and {u(k)} are the system output and input signals, respectively, with k ∈ Z+. ξ(k) is a noise sequence,
which is assumed to be i.i.d. with zero mean and finite variance. The polynomial order is denoted by a nonnegative
integer na ∈ Z

+.

A. Parameter identification
We will now proceed with what is known as system identification or parameter identification, in which we aim at

finding an estimate of the {ai}na

i=1 values using past values of y(k). These values of y(k) are derived from the filtered
CCMLE time series as described in the previous section. Since we cannot observe the noise signal ξ(k) directly, and only
have observations of y up to time k at our disposal, we must identify the parameters only using these past observations.
For this task, we consider the recursive least squares (RLS) estimator as presented by Ljung and Söderström [77]. If
the true process is linear and of the same or lower order as the model, the model will produce maximum likelihood
estimates of y, provided the noise process ξ(k) is i.i.d. and is sampled from a zero mean normal distribution [77]. Let
us define parameter vector θ of the form:

θ =


a1

a2
...

ana


(30)

given the vector of lagged output data ϕ(k):
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ϕ(k) =


−y(k − 1)
−y(k − 2)

...

−y(k − na)


(31)

Now, we find the following recursive algorithm based on an offline least squares method to estimate unknown
parameters θ, giving parameter estimate θ̂:

Algorithm 1 Recursive Least Squares Parameter Estimator

1: θ̂(0) ← 0na

2: ϕ(0) ← 0na

3: P(0) ← CIna×na

4: k ← n
5:
6: while k < (N + 1) · n do
7: L(k) ← P(k−n)ϕ(k)

1/λ+ϕË(k)P(k−n)ϕ(k)
8: P(k) ← P(k − n) − L(k)ϕË(k)P(k − n)
9: θ̂(k) = θ̂(k − n) + L(k)

[
y(k) − θ̂

Ë
(k − n)ϕ(k)

]
10: Wait for new window.
11: ϕ(k + n) ← [−y(k+n) −y(k−1+n) ·· · −y(k−na+n)]

Ë

12: k ← k + n
13: end while

The above algorithm solves the least squares problem for θ that satisfies the following minimization [77]:

θ∗ = arg min
θ

1
n

n∑
k=1

λ
[
y(k) − θËϕ(k)

]
. (32)

This minimization is done in a recursive manner in the above algorithm (details on which can be found in, e.g. [77]),
and allows more values to be included in the parameter identification process as they become available. Since it can
be shown that for P−1(0) → 0, the recursive estimate approaches the offline estimate (which solves the minimization
problem with no errors), C is taken to be a large constant to approximate this criterion, as per the guidelines of Ljung
and Söderström [77]. λ is the forgetting factor, which when decreased, gives greater weight to recent samples, allowing
for faster adaptation but also more fluctuation. In practice, it is taken between 0.98 and 1 [81]. In our case, C is taken as
106, and λ = 1. Naturally, we must stipulate na < n, so as to ensure it can be calculated using the past window of values.
In addition, here we have taken each window to be n samples long, and there to be N windows in total; we take the last
na samples of the last window to use in the algorithm.

The above algorithm only performs one-step-ahead predictions. Let us assume we wish to perform an m-step-ahead
prediction. We may readily find the following result by performing successive substitution, yielding what is known as
multi-step-ahead predictive identification (MSPI) [82]:

ŷ(k + 1|k) = θ(1)1 y(k) + . . . + θ(1)na
y(k − na + 1)

ŷ(k + 2|k) ≈
[
θ
(1)
1 θ
(1)
1 + θ

(1)
2

]
y(k) + θ(1)1 θ

(1)
2 y(k − 1) + . . .

= θ
(2)
1 y(k) + θ(2)2 y(k − 1) + . . . + θ(2)na

y(k − na + 1)

ŷ(k + 3|k) = θ(3)1 y(k) + θ(3)2 y(k − 1) + . . . + θ(3)na
y(k − na + 1)

...

ŷ(k + m|k) =
na∑
i=1

θ
(N )
i y(k − i + 1)

(33)
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To ‘train’ the parameter vector using the RLS estimator, we must shift the above result back by m samples, yielding:

ŷ(k |k − m) =
na∑
i=1

θiy(k − i + 1 − m) (34)

Therefore, in above algorithm, we simply replace the ϕ(k + n) step (Ln. 11) by:

ϕ(k + n) ←
[
−y(k + n − m) −y(k − 1 + n − m) · · · −y(k − na + n − m)

] Ë
. (35)

This will give us a parameter vector θ that will provide us with an m-step-ahead prediction. Since the number of past
values that we need access to increases quickly for increased na and prediction window m, it is best to keep this as low as
possible, such that the matrix algebra that is to be performed on-board is kept simple and storage requirements are kept
low. Keeping na reasonably high is advisable, as more of the process dynamics will be captured that way; as a matter of
fact, as na →∞, all processes can be captured by the autoregressive model [83]. Note that this asymptotic convergence
limit does not tell anything about the rate of convergence, and it should not be taken as an incentive to increase na

to higher than necessary values; in practice, it becomes apparent when an increase in na stops yielding increased
performance (see e.g., [84]). In operational practice, it becomes necessary to apply this estimation methodology at a
decreased sampling rate, so as to keep the computational effort in check; this will yield a smaller number of predictors
to be updated, thereby allowing for timely delivery of predictions at an acceptable frequency.

V. Application to the Mars Phoenix Lander
The Mars Phoenix lander landed on May 28th, 2008 on the Martian North Pole [63]. The Phoenix entry vehicle is a

70 degree sphere cone shaped capsule with a diameter of 2.65 m and an entry mass of 572.743 kilograms [39]. During
the hypersonic entry phase, the vehicle was unguided and not spin stabilized, following a purely ballistic trajectory [63].
After peak heating and peak deceleration, the vehicle slowed down to a Mach number of 1.65, when the supersonic
disk-gap-band parachute was deployed, followed by the terminal landing phase [63]. The complete EDL sequence
from entry interface to touch down took approximately 420 seconds, while the ballistic phase lasted approximately 230
seconds [39]. The relative timing and main events during the EDL sequence are shown in Fig. 2.

Fig. 2 Mars Phoenix nominal EDL sequence [63]

In the following subsections, we aim to reconstruct the atmospheric properties encountered by the vehicle during the
hypersonic phase of its entry. To accomplish this objective, we first consider the inertial entry state of the Mars Phoenix
lander as found in [40]. To propagate this state, we apply CCMLE filtering to the IMU data, so as to reduce its noise
after which we can apply those filtered measurements to reconstruct the trajectory from the entry interface onwards.
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Having reconstructed the trajectory, we utilize the inertial velocity to estimate the atmospheric profile. Then, the vehicle
attitude is determined from the filtered gyroscope measurements and inertial velocity vector, for comparison to other
data. Using these results, we finally demonstrate the performance of our autoregressive model when applied to density
and pressure prediction.

A. Entry state
The Phoenix entry state is obtained from an a priori onboard orbit determination solution known as OD77, which

utilized a previous star tracking attitude and propagates the state using inertial measurements [40]. We remark that the
OD77 epoch is delayed by 68 ms with respect to the pre-defined entry interface epoch at a radial distance of 3522 km
from the center of mass of Mars [39, 40]. This state is shown in Tab. 1 in the Earth Mean Equator of January 2000
(EMEJ2000) inertial frame centered on Mars:

Table 1 Mars Phoenix OD77 EMEJ2000 initial conditions [40]

Parameter Value

X (m) 1060304.16809705
Y (m) -645136.486623493
Z (m) 3296270.9865079
ÛX (m/s) 1464.27469596023
ÛY (m/s) 5350.16886003297
ÛZ (m/s) -770.68622121074
t0 (UTC) 2008-05-25T23:30:57.801

Since our primary interest is not in the absolute position of the vehicle in a Mars-relative frame, we shall carry out
our calculations in the EMEJ2000. For convenience, we have listed the initial rotation matrix to the Mars-Centered
Mars-Fixed (MCMF) frame at t0, and to the Phoenix cruise frame (‘C frame’, or CF) at the entry interface are derived
from the quaternions (based on the JPL quaternion convention) as stated in [40]:

RMCMF
EMEJ2000 =


−6.55644577 × 10−1 7.55069658 × 10−1 2.24550277 × 10−6

−7.55069653 × 10−1 −6.55644572 × 10−1 −1.20245955 × 10−4

−8.93218207 × 10−5 −8.05341195 × 10−5 9.99999993 × 10−1

 (36)

RCF
EMEJ2000 =


0.25649721 0.35289633 0.89981852
0.95982388 0.01659863 −0.28011176
−0.11378616 0.93551519 −0.33446082

 (37)

The relative orientation of the trajectory is shown in Fig. 3 in the MCMF frame.
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Fig. 3 Entry trajectory geometry in a Mars centered Mars fixed frame
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B. Signal noise reduction
We shall employ the CCMLE algorithm on the IMU sensor signals with a fixed window length of n = 100 samples,

making for a total of 45500 samples or N = 455, which is equivalent to a time frame of ∆t = 227.5 s from the entry
interface to approximately parachute deployment [40]. The CCMLE algorithm is implemented in its windowed form
with an initial equality constraint, and is modified to take a single value of ε per signal that is applied as a universal
constraint to that particular signal. Tab. 2 lists all the gradient bounds ε ≡ ε/h, where h = 5 ms is the sampling period,
as used in this work:

Table 2 Gradient bounds applied to CCMLE filtering for the Mars Phoenix entry data

Parameter Gradient bound ε Unit

ax,body, xbody (axial) acceleration 3.0 m s−3

ay,body, ybody (normal) acceleration 0.08 m s−3

az,body, zbody (normal) acceleration 0.08 m s−3

Ωx , xbody angular velocity 0.02 rad s−2

Ωy , ybody angular velocity 0.08 rad s−2

Ωz , zbody angular velocity 0.08 rad s−2

Relating back to our previous discussion, the above gradient bounds are equal to bounds on the maximum jerk
and angular acceleration that is expected to occur; this forms an intuitive means of tuning the CCMLE filter, and is
firmly grounded in physical reality. In this case, the above values were determined by considering the filtered data from
Withers and Catling [39] and the relative magnitudes of the numerically computed gradients between the filtered data
(from [39]) and raw data.

Filtering the data is very straightforward thanks to the conciseness of the C interface produced by CVXGEN. Fig. 4
shows the raw data (EDR, for ‘experimental data records’) in blue, with both the CCMLE results and the Withers and
Catling [39] (W&C) results to demonstrated the adequacy of the filtering results. The results by Withers and Catling
[39] were produced with full knowledge of the approximate vehicle aerodynamics and final landing location, and serve

15



as a nominal guideline to which we compare our results. Note that body angles were provided as quaternions by Withers
and Catling [39], which would have introduced additional noise had we differentiated them with respect to time; these
rates are therefore omitted, but can be ascertained in the work of Karlgaard and Tynis [40].
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Fig. 4 Raw and filtered inertial measurement properties for the Mars Phoenix lander

In an effort to determine the accuracy of our filter in an online setting, in which the number of numerical operations
is to be limited, we have performed a simple Riemann sum-based integration on the computed inertial accelerations, as
per the above derivations. This has produced rather satisfactory results (see Fig. 5), with a maximum velocity error of
5.8 m s−1 and a maximum radius error of 4.2 km, near parachute deployment; this likely stems from the numerical error
that propagates from residual noise and the numerical integration scheme. In addition, we must note that Withers and
Catling [39] applied forward and backward estimates (from the a posteriori landing location), which are subsequently
combined using a modified Bryson–Frazier smoother [30, 85]. Since our goal is not to determine the absolute vehicle
position, errors in the position are of no great concern.
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Fig. 5 Inertial state trajectory reconstruction results

Considering the above results, we find that the results from Withers and Catling [39] closely match those produced
using CCMLE, especially when considering the velocity estimate which will extensively use in the following subsections.
While CCMLE takes intuitive rate of change bounds as its input, the approach of Withers and Catling [39] relies on a
combination of moving-average windows of different, heuristically determined, lengths. In addition, both forward and
backward integration were applied from the entry state and the landing site, respectively. The approach of Withers
and Catling [39] thus requires a posteriori knowledge that our algorithm does not. Most importantly, the procedure
of Withers and Catling [39] is heavily reliant on the use of an aerodynamic database. Our approach requires only
knowledge of the rate of change bounds, and uses only past values in its implementation, making it suitable for online
use, in which it can directly generate atmospheric estimates, as shown in the next subsections.

C. Atmosphere reconstruction
We shall first consider the estimation of the density field in the rarefied flow regime. Since it is more convenient to

work with a time window as opposed to some boundary altitude, we have chosen to consider the atmosphere encountered
during the first 50 s since reentry to be (close to) rarefied; this checks out given the altitude requirements discussed
previously. To obtain immediate results, we utilize the inertial velocity approximation for the relative velocity. In
addition, to find a datum for the pressure near the entry interface, we shall employ Eq. (28), given a scale height of
H = 11.1 km [86]. In addition, the rate of change equations for both properties are evaluated to show that this constitutes
an adequate bootstrapping method. The results are shown in Fig. 6:
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Fig. 6 Rarefied atmosphere thermodynamic property reconstruction results

Overall, we observe that adequate results are obtained in the higher atmospheric layers earlier on in the EDL phase.
Of particular interest are is the air density rate, which is much more stable in the case of CCMLE, when compared to the
values from [39]. This is attributed to the fact that the underlying IMU measurements have been limited in their rate of
change when they were filtered using CCMLE, and this bound still persists after Eq. (26) is evaluated. The type of
smooth behavior observed in the rate of change of air density in the CCMLE case is characteristic of air density shear in
actual atmospheres, and is therefore more realistic [41, 73].

The air density and pressure estimates obtained in the rarefied flow regime can readily be used to propagate the
time derivatives obtained previously. Here, we take the maximum of the estimated density and pressure over the first
15 s since entry, and take those to be the values at t − t0 = 15 s, from which we propagate them. The reason for this
time stems from the fact that the vehicle reaches an altitude of 80 km near that time. An altitude of 80 km is around the
limit of the rarefied flow assumption, as discussed earlier. In practice, it was seen that a correction factor is needed
for the density at the epoch, since the CA ≈ 2 assumption starts to lose validity for such a window length; conversely,
limiting the period over which the rarefied assumptions are taken true will produce an initial estimate that is extremely
susceptible to noise and will amplify errors, as it appears in the denominator of the rate of change. We have therefore
chosen to implement a correction factor of 1.05, which roughly corresponds to the density estimate (see Eq. (22))
correction ratio of 2/CA, for CA ≈ 1.9, and approximately holds for the Phoenix Lander over this regime [39]. This
implies that at least some rudimentary knowledge of the static aerodynamics of the vehicle is needed, but is only limited
to the axial drag coefficient in the rarefied regime.

Given this correction, we find our approach to closely match the results from both [59] and a simulated profile from
the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010, [41]). This supports the use of our approach
and underlines the necessity of an axial drag coefficient estimate. Given this correction factor, we find the following
density and pressure fields over the complete hypersonic regime (Fig. 7):
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Fig. 7 Hypersonic regime atmosphere thermodynamic property reconstruction results

Note that these air density and pressure estimates may be indefinitely propagated, provided that the estimates of
the radial velocity and position are available. As a first approximation, sufficiently accurate results can be obtained by
assuming a constant gravity field, thereby requiring only predictions of the radial velocity. This assumption enables
us to compute short-term predictions of the air density and pressure the vehicle will encounter as it continues on its
trajectory, knowledge of which can be supplied to a guidance algorithm in the case of an actively controlled vehicle
[6]. We shall shortly show how these air density and pressure predictions can be obtained by applying the parameter
identification routine presented before.

D. Wind-relative attitude reconstruction
We shall first consider the angle of attack, an estimate for which is presented by Withers and Catling [39]. Using the

previously identified relations, given the current velocity vector and body Euler angles, we can find our scheme to yield
an angle of attack estimate as shown in Fig. 8:

Fig. 8 Angle of attack estimate in the hypersonic regime
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As can be observed, a bias of roughly two degrees is found between 70 and 130 s. Both Withers and Catling [39]
and Karlgaard and Tynis [40] have observed a similar but smaller discrepancy when using the IMU measurements
and an a priori aerodynamic database; there results, however, agree mutually despite using different reconstruction
techniques, so we assume both of their results to be correct. Desai et al. [63] have noted that this slight discrepancy in
the case of [39, 40] stems from a minor malalignment of the heatshield, but in our case we believe it to be an artifact of
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the rather inaccurate (yet efficient) integration scheme employed to propagate the body attitude, as well as compute the
velocity vector. Regardless, general trends can clearly be identified.

E. Atmospheric prediction
As discussed previously (Sec. IV), we shall employ an m-step-ahead autoregressive predictor to determine future

values of the air density. We predict m = 1000 steps ahead, which is equivalent to 5 seconds in the future. We have
taken our polynomial size to be na = 10, and updated the RLS algorithm every n = 100 samples. The results are shown
in Fig. 9:
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Fig. 9 Hypersonic regime atmospheric density prediction results

Here, the estimates correspond to those values of air density that have been computed with knowledge up to their
time i.e., ρ̂(k |k). The predictions are m-step-ahead predictions of the estimates, determined using data that are obtained
m-steps-ahead of the predicted point in time i.e., ρ̂(k |k −m). Finally, the least-squares fit shows the values of θ̂Ë(k)ϕ(k),
which are approximately equal to ρ̂(k |k) in a least-squares sense.

As can be seen, even for such large time step as 0.5 s, the prediction errors are low enough to be useful for use in
predictive guidance schemes. Since the time scales we have considered here are well below those of the atmospheric
processes [39], errors have remained low even at a small polynomial order. Incidentally, an increase in polynomial order
did not yield any accuracy improvements.

VI. Conclusion
In this work, we have presented a novel approach to online filtering of IMU measurements, known as CCMLE. This

approach forgoes many of the limitations of the extended Kalman filters, in that it does not require the computation or
estimation of a Jacobian matrix, nor the solution of a (set of) Riccati equation(s). As the CCMLE solution procedure
involves the solution of a convex quadratic programming problem, it can be efficiently solved on modest hardware using
specially tailored embedded solvers such as CVXGEN. As for using the CCMLE filter, we have shown that the bound
vector ε can be determined from preliminary engineering simulations or design specifications, and can be adjusted
intuitively by relating it to signal error statistics.

As a preliminary exposition of the capabilities of the CCMLE filter, we have presented its application in the
framework of a HFV navigation system during atmospheric entry. We have presented a general approach to data
reduction, which forms the basis of enabling an unbiased approach to obtaining the present vehicle state, attitude, and
local atmospheric properties. We have presented a simplified approach that relies almost exclusively on matrix-vector
operations, and can readily be applied on an HFV, provided an initial (entry) state is available. From this state, all the
above parameters can be estimated using the CCMLE-filtered IMU readings. To enable a continuous stream of data to
be secured, as well as to obtain near-term predictions, a simple autoregressive model is presented and implemented
using recursive least-squares. Using this approach, no vehicle properties are needed to be known at the time of entry,
except for the vehicle’s initial mass and area. By assuming the vehicle to be tangent to the wind vector, and assuming it
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to be blunt body in the rarefied flow limit during the first stages of entry, we can obtained a primer on the density and
pressure. Beyond this assumption in the rarefied flow regime, none of the vehicle dynamics are assumed.

To demonstrate the aforementioned theory, we have turned to the Mars Phoenix lander and have analyzed its
trajectory from the entry interface up to parachute deployment. The CCMLE estimates of the IMU data closely match
those produced through previous data reduction efforts that assume vehicle properties [39, 40], and produce adequate
inertial trajectories when integrated using a simple trapezoidal scheme. Since we have shown that stationary Gaussian
processes get filtered out completely using our method, we believe CCMLE produces more reliable results when
applied to highly noisy data, since no errors originating from erroneous vehicle dynamics are introduced, which would
have been the case when using Kalman filter schemes. From this filtered data, two thermodynamic parameters of the
atmosphere, namely density and pressure, were retrieved as derived from first principles. While the assumption of an
axial force coefficient of 2 produced poor results, but a simple change to a more realistic value of 1.9 greatly improved
the performance of our algorithms, closely matching results from the Mars-GRAM 2010 model. This gives cause to the
conclusion that Newtonian theory will not produce adequate atmospheric profiles, and proper knowledge of the static
aerodynamic properties of a vehicle in the rarefied regime are needed to achieve correct atmospheric estimates. In
future work, it would be desirable to quantify the effect of an erroneous initial estimate of the static vehicle dynamics on
the atmosphere profile produced, and the importance of a correct initial axial drag coefficient. As of yet, the authors
have found no way to remove any assumed model of the static aerodynamics, which would inadvertently introduce
model errors that quickly propagate through the rest of the atmospheric profile. If an initial density would be assumed,
errors in its value would propagate through the resulting profile and could greatly alter its shape (see Eq. (24), in which
density appears in the denominator). Future efforts may focus on quantifying the effect of an arbitrary or modeled first
density estimate.

Following the atmospheric reconstruction phase, we have taken to reconstructing the aerodynamic angles of the
entry vehicle. These results showed similar trends as previous construction efforts, but showed a consistent shift of
around two degrees for a great portion of the trajectory. This is currently attributed to the low order of accuracy of the
integration scheme employed, of where the errors have likely corrupted the inertial state and attitude estimates of the
vehicle. Refining this scheme at the cost of slightly increased computational effort should alleviate this problem.

Finally, prediction results for the air density profile have been demonstrated, and good performance and accuracy
were found for a large prediction window and a small polynomial order. These results suggest that autoregressive models
of low order produce good estimates even when used a significant number of steps in the case of a high sampling rate.
As has been discussed before, this is only possible because the time scales of atmospheric processes during entry are
greater than those of the prediction window, therefore allowing for those atmospheric processes to be approximated as
stochastically stationary linear processes between predictions. The existence of an underlying stochastically stationary
linear processes makes time series such as the density profile amenable to prediction using autoregressive models.

In future work, the CCMLE filter will be studied in greater depth to find properties regarding its learning rate. By
learning rate we refer to the number of samples required before estimates are obtained within a certain error bound,
given any initial estimate within certain bounds from the true initial state. This will allow us to determine the minimal
window size necessary to estimate the dynamics of the system within a particular error bound, and achieve a correct
estimate at a certain confidence within a given number of samples depending on the noise properties of the signal. In
addition, the effect of erroneous initial estimates, such those introduced by an erroneous initial state, will be studied to
determine the robustness of CCMLE to such samples. Beyond these topics, the effect of outliers and biased or offset
data will be explored. All of these efforts will result in a model of the worst case performance of CCMLE, allowing
errors to be bound and heuristics to be obtained to ensure a minimum level of accuracy. These results can then be
applied to similar problems in guidance and navigation of HFVs, ultimately allowing not only for measures of learning
rate to be known beforehand, but also for change detection and bias correction that would be advantageous in when
applied in rapidly changing environment such as those encountered in hypersonic flight.
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