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Abstract
This work presents a method of efficiently computing inner approxi-
mations of forward reachable sets for nonlinear control systems with
diminished control authority, given an a priori computed reachable
set for the nominal system. The method functions by shrinking a
precomputed convex reachable set based on a priori knowledge of
the system’s trajectory deviation growth dynamics. The trajectory
deviation growth dynamics determine an upper bound on the min-
imal deviation between two trajectories emanating from the same
point that are generated by control inputs from the nominal and di-
minished set of control inputs, respectively. These growth dynam-
ics are a function of a given Hausdorff distance bound between the
nominal convex space of admissible controls and the possibly un-
known impaired space of admissible controls. Because of its rel-
ative computational efficiency compared to direct computation of
the off-nominal reachable set, this procedure can be applied to on-
board fault-tolerant path planning and failure recovery. We consider
the implementation of the approximation procedure by way of nu-
merical integration and a root finding scheme, and we present two
illustrative examples, namely an application to a control systemwith
quadratic nonlinearities and aircraft wing rock dynamics.

1 Introduction.
Reachability analysis forms a fundamental part of dynamic
system analysis and control theory, providing a means to as-
sess the set of states that a system can reach under admissi-
ble control inputs at a certain point in time from a given set
of initial states. Inner approximations of reachable sets are
often used to attain a guaranteed estimate of the system’s ca-
pabilities, while outer approximations can be used to verify
that the system will not reach an unsafe state. Such outer ap-
proximations find widespread applications in fault-tolerance
analysis and formal verification [5], as well as safe trajectory
planning [27]. Methods for computing outer approximations
of the reachable set include polynomial overapproximation
[1] and viscosity solutions to the Hamilton–Jacobi–Bellman
(HJB) equations [4].

Inner approximations of reachable sets have received
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comparatively less attention than outer approximations [10],
but have recently seen use in path-planning problems with
collision avoidance [25], as well as viability kernel computa-
tion [11], which can in turn be used for guaranteed trajectory
planning [13]. Another application is flight envelope estima-
tion for aircraft; the penalty of overconfidence in flight en-
velope estimation is often severe, and over-preparedness as
the cost of underconfidence is much preferred in such a con-
text [26]. Methods for determining inner approximations of
reachable sets have been based on various principles, includ-
ing relying on polynomial inner approximation of the non-
linear system dynamics using interval calculus [9], ellipsoid
calculus [8], and viscosity solutions to HJB equations [29].
One major drawback of these methods is that they are com-
putationally intensive and are often only suitable for systems
of low-dimension, making them ill-suited for online use.

Motivated by the desire to leverage available a priori in-
formation on the nominal system dynamics and trajectory de-
viation growth dynamics, this paper focuses on finding an
inner approximation of the reachable set using this informa-
tion rather than starting from scratch. Here, we consider the
reachable set of the nominal system, or an inner approxima-
tion thereof, to be known prior to the system’s operation. As
noted before, obtaining this reachable set is often a compu-
tationally intensive task, yet it is crucial that a reachable set
be obtained in safety-critical applications; for this reason, the
reachable set is often obtained during the design phase of a
system [16]. We then consider a change in dynamics of the
system, for example due to partial system failure, which turns
the nominal system into the off-nominal system. In particu-
lar, we consider the case in which the system experiences di-
minished control authority, i.e., its set of admissible control
inputs has shrunk with respect to that of the nominal sys-
tem. We consider that an upper bound on the minimal rate
of change of the trajectory deviation between the off-nominal
system’s trajectories with respect to those of the nominal sys-
tem’s is known, with both trajectories emanating from the
same point. These growth dynamics provide an upper bound
on the minimal rate of change between two trajectories ema-
nating from the same point, with one trajectory being gener-
ated by the nominal set of control inputs, and the other by the
off-nominal set of control inputs. An upper bound on these
growth dynamics can be obtained analytically during the de-
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sign phase, and allows us to obtain an inner approximation to
the off-nominal system’s reachable set at low cost, in an on-
line manner. Our method applies to affine-in-control systems
under some technical assumptions.

While methods have been proposed to compute reach-
able sets under system impairment, due to their computa-
tional complexity, these have either used reduced order mod-
els, or have been limited to offline applications [20]. Given
a sufficiently tight bound on the trajectory deviation growth
dynamics, our approach can be applied online to higher di-
mensional systems with no additional computational cost for
the growth in system dimension. To the best of our knowl-
edge, an approach similar to ours has not been considered in
the literature.

This paper is organized as follows. In Sec. 2, we formally
present the problem of inner approximation of the reachable
set and introduce the notion of diminished control authority,
as well as sufficient conditions for reachable set convexity.
Sec. 3 presents an integral inequality that provides a general
bound on the trajectory deviation growth between trajectories
of the nominal and off-nominal system emanating from the
same point. Sec. 4 contains the main results, providing the
means of inner approximating the off-nominal reachable set
based on the nominal reachable set and known trajectory
deviation growth conditions. We illustrate the theory in
Sec. 5, where we apply it to a control system with quadratic
nonlinearities and an aircraft wing rock model.

Notation. In the following, we denote by ⟨⋅, ⋅⟩ the inner
product, i.e., ⟨a, b⟩ = aTb for a, b ∈ ℝn. By ‖ ⋅ ‖ we denote
the Euclidean norm. We denote a ball centered around the
origin with radius r > 0 as r. By (x, r) we denote x+r.We define ℝ+ ∶= [0,∞). We denote the Hausdorff distance
between two sets A,B ⊆ S as

dH(A,B) ∶= max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)},

where S is a given metric space with metric d. Given a point
x ∈ S and a setA ⊆ S, we denote d(x,A) ∶= infy∈A d(x, y).By A + B we denote Minkowski sum {a + b ∶ a ∈ A, b ∈
B}. We denote by )A the boundary of A. For a function
g ∶ A → B, we denote by g−1 the inverse of this function if
an inverse exists, and by dom(g) the domain of the function
(in this case A). We denote a multifunction by G ∶ A ⇉ B,
where G maps elements of A to subsets of B.
2 Problem Formulation.
Consider a dynamical system of the form
(2.1) ẋ(t) = f (t, x(t), u(t)), x(0) = x0,

where t0 ∈ ℝ+ is a given initial time, t ∈ [t0,∞), x ∈ ℝn is
the state, and u ∈ U ⊆ ℝm is the control input, where U is
some admissible set of control inputs. We refer to dynamics
(2.1) as the nominal dynamics.

We consider a modified set of admissible control inputs
Ū ⊆ U , reflecting a reduction in control authority. The
modified dynamics then read
(2.2) ̇̄x(t) = f (t, x̄(t), ū(t)), x̄(t0) = x0,

with ū ∈ Ū .
We refer to dynamics (2.2) as the off-nominal dynamics.

Our goal is to efficiently find an inner approximation of the
forward reachable set with off-nominal dynamics (2.2), under
some assumptions on the dynamics and the admissible sets of
controls Ū ,U , given the forward reachable set with nominal
dynamics (2.1) from the same set of initial points.

We first lay out a number of definitions.

DEFINITION 2.1. (TRAJECTORIES) A function � ∶ ℝ →
U is known as an admissible input signal. The set
of admissible control signals comprises all possible ad-
missible input signals, i.e., U ∶= {� ∶ ℝ →
U | a solution to (2.1) for � exists and is unique}.

A trajectory ' ∶ ℝ × ℝn × U → ℝn is defined such that
x(t) = '(t|t0, x0, �) satisfies (2.1) given initial time t0 ∈ ℝ+,
initial state x(t0) = x0 ∈ ℝn, and input signal u(t) = �(t) ∈
U, i.e., '(t|t0, x0, �) ∶= x0 + ∫ tt0 f (�, x(�), �(�)) d�.

By definition, any trajectory '(t|t0, x0, �) sat-
isfies '̇(t|t0, x0, �) = f (t, '(t|t0, x0, �), �(t)) ∈
F (t, '(t|t0, x0, �)), where F (t, x) ∶= f (t, x,U), for all
t ∈ ℝ+.

All of the above definitions are similarly extended for
(2.2), with all symbols having an overbar.

DEFINITION 2.2. (FORWARD REACHABLE SET) Let
F (t, x) ∶= f (t, x,U). Given a set of initial states X0 ⊆ ℝn

and an initial time t0 ∈ ℝ+, the forward reachable set (FRS)
at time � ∈ [t0,∞) is

X→
� = X→

� (F ,X0) ∶= {'(�|t0, x0, �) ∶ x0 ∈ X0, � ∈ U}.

PROBLEM 1. (OFF-NOMINAL FRS INNER APPROXIMATION)
Given dynamics ẋ(t) = f (t, x(t), u(t)), where
f ∶ [0,∞) ×ℝn ×U → ℝn, a set of admissible control
inputs U ⊂ ℝm, (an inner approximation of the) forward
reachable set X→

� at time �, and the corresponding initial
set of states X0 and an initial time t0 ∈ ℝ+, as well as a
Hausdorff distance bound � > 0 such that dH(U , Ū) ≤ �,
find an inner approximation of the reachable set X̄→

� for
dynamics (2.2).

We emphasize that Problem 1 only requires knowledge
of an upper bound on the Hausdorff distance between the
nominal and off-nominal set of admissible control inputs, i.e.,
dH(U , Ū) ≤ �; the set of off-nominal admissible control
inputs Ū itself need not be known.



2.1 Conditions for Reachable Set Convexity. We pro-
ceed by recalling a number of sufficient conditions for con-
vexity of reachable sets. Before we do so, we present a defi-
nition of a stronger convexity condition on sets.
DEFINITION 2.3. (R-CONVEXITY [14, P. 124], [15, P. 191])
GivenR ≥ 0, a nonempty compact setA ⊂ ℝk isR-convex if
A is the intersection of closed balls of radius R. The number
of balls that are intersected need not be finite or countable.

R-convex sets are known to be strictly convex, i.e., their
boundary does not contain any line segments between any
two members [14, p. 124]. The family of R-convex encom-
passes many sets frequently used in control theory, including
balls and ellipsoids. Even though other convex sets such as
hyperrectangles are notR-convex for anyR ∈ ℝ+, the theorywe are presenting appears to extend to some of these cases,
as shown in Sec. 5.2.

The following definition will be used in the main the-
orem of this section, which provides an explicit interval of
existence of a convex reachable set.
DEFINITION 2.4. (PLIŚ METRIC [22, EQ. 3]) Given two
strictly convex compact sets A,B ⊆ ℝk, the Pliś metric is
defined as dP(A,B) ∶= maxp∈)1 ‖v(A, p)−v(B, p)‖, where
v(X, p) satisfies ⟨p, v(X, p)⟩ = maxx∈X⟨p, x⟩ for any strictly
convex compact set X.

THEOREM 2.1. (FRS CONVEXITY [15, THM. 2]) LetF be a
continuous multifunctionℝ×ℝn ⇉ ℝn, with n ≥ 2. Let there
exist constants R,M,L ≥ 0, and assume that for all t ∈ ℝ,
x, y ∈ ℝn, and � ∈ [0, 1]:

(1) F (t, x) is R-convex;
(2) dP(F (t, x), F (t, y)) ≤M‖x − y‖;
(3) dP(F (t, �x + (1 − �)y), �F (t, x) + (1 − �)F (t, y)) ≤

L�(1 − �)‖x − y‖2.

Let F be measurable with respect to t ∈ ℝ for each x ∈ ℝn,
and let it be bounded by an integrable function on each
compact set in ℝ × ℝn. Let X0 ⊂ ℝn be R0-convex. Let

(⋅) be a solution to the differential Riccati equation 
̇ =
L + 3M
 + 2R
2, with 
(t0) = R0, and define Δt ∶=
∫ ∞R0 (R + 3M
 + 2L
2)−1d
 .

Then, Δt > 0 and X→
t (F ,X0) is 
(t)-convex for all

t ∈ [t0, t0 + Δt].

3 Trajectory Deviation Growth Bounds.
To be able to relate the trajectories of the nominal system
to those of the off-nominal system, it is necessary that we
have knowledge of the growth of the trajectory deviation.
Specifically, we must know how far apart two trajectories,
emanating from the same point, may at least grow as a
function of time, given that one trajectory is generated using

nominal control inputs, and the other is generated using off-
nominal control inputs. In this section, we present an integral
inequality that uses only a bound on the trajectory deviation
dynamics as a function of time.

We assumeU ⊂ ℝm to be a compact set, i.e., there exists
a � ≥ 0 such that maxu∈U ‖u‖ = �. To obtain the desired
bounds on the trajectory deviation, we make the following
assumptions on some general functionℎ ∶ [t0,∞)×ℝn×U →
ℝn, which will later be taken as the difference between the
dynamics of the nominal and off-nominal system.

We now pose a nonlinear bound on the magnitude of ℎ:
ASSUMPTION A1. For a function ℎ ∶ [t0,∞) × ℝn × U →
ℝn, assume ‖ℎ(t, x, u)‖ ≤ a(t)w(‖x‖, ‖u‖) + b(t) for all
t0 ≤ t < ∞, where a, b are continuous and positive and w is
continuous, positive and nondecreasing in ‖x‖ and ‖u‖.

We can now prove the following integral inequality,
which is an extension of the Bihari inequality [21, p. 113,
Thm. 2.3.4] in that we consider systems with control inputs.
THEOREM 3.1. (EXTENDED BIHARI INEQUALITY) Let x(t)
be a solution to the equation

ẋ = ℎ(t, x, u), 0 ≤ t0 ≤ t <∞,

where ℎ(t, x, u) ∶ [t0,∞) × ℝn × U → ℝn is continuous
for t0 ≤ t < ∞, and U ⊂ ℝm is compact and satisfies
maxu∈U ‖u‖ = �. Let A1 hold. Then,
(3.3)
‖x(t)‖ ≤ G−1

[

G

(

‖x(t0)‖ + ∫

t

t0
b(�)d�

)

+ ∫

t

t0
a(�)d�

]

,

where the upper bound is strictly increasing in t, and

G(r) ∶= ∫

r

r0

ds
w(s, �)

, r > 0, r0 > 0,

for arbitrary r0 > 0 and for all t ≥ t0 for which it holds that

G

(

‖x(t0)‖ + ∫

t

t0
b(�)d�

)

+ ∫

t

t0
a(�)d� ∈ dom(G−1).

Proof. From (2.1), we have that
x(t) = x(t0) + ∫

t

t0
f (�, x(�), u(�)) d�,

from which we find, after applying A1,

‖x(t)‖ ≤ ‖x(t0)‖+∫

t

t0
b(�)d�+∫

t

t0
a(�)w(‖x(�)‖, ‖u(�)‖)d�.

We define functions y, g as
y(t) ∶= ∫

t

t0
a(�)w(‖x(�)‖, ‖u(�)‖)d�, t ≥ t0,

g(t) ∶= ‖x(t0)‖ + ∫

t

t0
b(�)d�, t ≥ t0,



which gives ‖x(t)‖ ≤ g(t) + y(t) for t ≥ t0. Differentiatingthese functions, we find
y′(t) = a(t)w(‖x(t)‖, ‖u(t)‖) ≤ a(t)w(g(t) + y(t), �), t ≥ t0,
g′(t) = b(t), t ≥ t0,

which gives
g′(t) + y′(t)

w(g(t) + y(t), �)
≤ a(t) +

g′(t)
w(g(t) + y(t), �)

≤ a(t) +
g′(t)

w(g(t), �)
, t ≥ t0,

(3.4)

where the inequalities follow from the positivity and mono-
tonicity of y′(t) and w(⋅, �). Integrating (3.4) yields

(3.5) ∫

g(t)+y(t)

g(t0)+y(t0)

ds
w(s, �)

≤ ∫

t

t0
a(s)ds + ∫

g(t)

g(t0)

ds
w(s, �)

,

for t ≥ t0. Noting that y(t0) = 0 and g(t0) = ‖x(t0)‖, from(3.5) we obtain
G(g(t) + y(t)) − G(‖x(t0)‖) ≤

∫

t

t0
a(�)d� + G(g(t)) − G(‖x(t0)‖),

which yields
(3.6)
G(g(t) + y(t)) ≤ G

(

‖x(t0)‖ + ∫

t

t0
b(�)d�

)

+ ∫

t

t0
a(�)d�.

From (3.6) and ‖x(t)‖ ≤ g(t) + y(t), applying the inverse
of G, we obtain the inequality as in (3.3). Since G is strictly
increasing because of the nonnegativity of a, b,w,G−1 is also
strictly increasing by [24, p. 137, Thm. 18.4]. Therefore, the
right-hand side of (3.3) is strictly increasing in t.

Note that the results in Thm. 3.1 do not depend on
the dimension of the actual system since only scalar values
that represent vector norms are considered in the trajectory
deviation growth bound. We are now in a position to make a
claim about the difference between trajectories of the nominal
and off-nominal system, given the assumptions on the growth
conditions:
COROLLARY 3.1. For any x0 ∈ X0 ⊂ ℝn, where X0 is
compact, and any initial time ti ∈ [t0,∞) and final time
tf ∈ [ti,∞), consider a trajectory x(t) satisfying x(ti) = x0
and ẋ(t) = f (t, x(t), u(t)), with u(t) ∈ U. Consider a
trajectory x̄(t) with x̄(ti) = x0 and ̇̄x(t) = f (t, x̄(t), ū(t)),
such that ū(t) ∈ Ū satisfies supt∈[ti,tf ] ‖u(t) − ū(t)‖ ≤ �. Let
f̃ (t) ∶= f (t, x(t), u(t)) − f (t, x̄(t), ū(t)), x̃(t) ∶= x(t) − x̄(t),
and ũ(t) ∶= u(t) − ū(t). Let the following bound hold
for t ∈ [ti, tf ], and for any x(t) and x̄(t) satisfying the

previous hypotheses: ‖f̃ (t)‖ ≤ ã(t)w̃(‖x̃(t)‖, ‖ũ(t)‖) + b̃(t)
with ã, b̃, w̃ satisfying the assumptions given in A1. Then, x̃(t)
satisfies
(3.7)
‖x̃(t)‖ ≤ G−1

[

G

(

∫

t

t0
b̃(�)d�

)

+ ∫

t

t0
ã(�)d�

]

=∶ �(t, �)

for all t ∈ [ti, tf ].

Proof. Given the premise, this claim follows directly from
Thm. 3.1.
4 Inner Approximation of the Reachable Set.
We now state the main result of this paper, which draws
upon the trajectory deviation bound of Cor. 3.1 and the
convexity guarantee of Thm. 2.1. In particular, we obtain
a Hausdorff distance bound between the nominal and off-
nominal reachable sets that holds during a time interval in
which both reachable sets are guaranteed to be convex. This
bound allows us to obtain an inner approximation of the off-
nominal reachable set by shrinking the nominal reachable set
by this Hausdorff distance bound.
THEOREM 4.1. (OFF-NOM. FRS INNER APPROXIMATION)
LetR,R′, R0 ≥ 0, and let f ∶ [0,∞)×ℝn×U → ℝn, where
U ⊂ ℝm is an R-convex set of admissible controls. Let
U� ⊆ U be an R-convex set of off-nominal admissible con-
trols such that dH(U ,U�) ≤ �. Let F�(t, x) = f (t, x,U�) and
F (t, x) = f (t, x,U) beR′-convex for all (t, x) ∈ [t0,∞)×ℝn.
Let an R0-convex set X0 ⊂ ℝn of initial states, and initial
time t0 ∈ ℝ+ be given. Let the hypotheses of Cor. 3.1 be
satisfied with Ū = U� , ti = t0, and tf to be specified in
claim (ii). Let �(t, �) be obtained as in Cor. 3.1. Then:

(i) there exists a Δt > 0 such that the reachable sets
X→
t (F ,X0) and X

→
t (F� ,X0) are convex for t ∈ [t0, t0 +Δt];

(ii) let 0 < T ≤ Δt, and let tf ≥ t0 + T . For each x0 ∈ X0
there exists a trajectory x(t) emanating from x(t0) = x0 with
ẋ(t) ∈ F (t, x(t)) and a trajectory x�(t) satisfying x�(t0) = x0
and ẋ�(t) ∈ F�(t, x�(t)) such that ‖x(t) − x�(t)‖ ≤ �(t, �) for
all t ∈ [t0, tf ];

(iii) for all t ∈ [t0, t0 + Δt], X→
t (F� ,X0) ⊆ X→

t (F ,X0);

(iv) Let �(�) = �(t0 + T , �). For all t ∈ [t0, t0 + T ],
dH[X→

t (F� ,X0),X
→
t (F ,X0)] ≤ �(�);

(v) for all t ∈ [t0, t0 + T ],

X→
t (F ,X0) ⧵

⋃

x∈)X→
t (F ,X0)

(x, �(�)) ⊆ X→
t (F� ,X0).

Proof. (i) By our hypotheses, both F (t, x) and F�(t, x) are
R′-convex for all (t, x) ∈ [t0,∞) × ℝn. In addition, F�



shares constantsM and L of Thm. 2.1 with F , since we have
F�(t, x) ⊆ F (t, x) for all (t, x) ∈ [t0,∞) × ℝn. Therefore,
Thm. 2.1 is satisfied for both F and F� , which then share thesameΔt > 0 such that for all t ∈ [t0, t0+Δt] bothX→

t (F� ,X0)and X→
t (F ,X0) are convex.

(ii) This fact follows directly from Cor. 3.1.
(iii) This fact follows trivially by considering that any trajec-
tory that can be generated using control inputs from a set of
admissible controls (U�) can also be generated using controlinputs from a superset (U).
(iv) From (ii), the maximal distance between two points
in X→

t (F ,X0) and X→
t (F� ,X0) is given to be �(t, �). In

Thm. 3.1 it shown that �(t, �) is increasing in t, which proves
the claim.
(v) We shall now denote � = �(�), and A = X→

t (F� ,X0) and
B = X→

t (F ,X0) for any t ∈ [t0, t0 + T ]; recall that A and B
are convex. We wish to show that B ⧵

(
⋃

x∈)B (x, �)
)

⊆ A.
We invoke a characterization of the Hausdorff distance

[19, pp. 280–281]:
(4.8) dH(A,B) = inf{� ≥ 0 ∶ A ⊆ B+�, B ⊆ A+�},

where X+� denotes the �-fattening of X, i.e., X+� ∶=
⋃

x∈X{y ∈ ℝn ∶ ‖x − y‖ ≤ �}. Therefore, dH(A,B) ≤ �
implies B ⊆ A+� .

By [28, p. 116, Thm. 20], for two non-empty con-
vex compact sets A,B, their Hausdorff distance equals the
Hausdorff distance between their boundaries, which implies
dH(A,B) = dH()A, )B) ≤ � in our case, by noting that
A,B are 
(t)-convex sets by Thm. 2.1, and are therefore com-
pact by Def. 2.3. Applying the previous characterization
of the Hausdorff distance, we find that )A ⊆ ()B)+� and
)B ⊆ ()A)+� .

We now prove that B ⧵A ⊆ ()B)+� . To this end, we firstprove the intermediate result B ⧵ A ⊆ A+� ⧵ A ⊆ ()A)+� .
We find that B ⊆ A+� follows from (4.8), implying

A+� ⧵ A ⊇ B ⧵ A. We then wish to show that A+� ⧵ A ⊆
()A)+� . Indeed, A+� ⧵ A includes all points outside A that
are at most distance � away from the nearest point in A. Any
line from a point exterior to A into A must first pass through
)A, which implies that for all x ∉ A, d(x,A) = d(x, )A)
[28, p. 109, Lm. 3]. In other words, all points in A+� ⧵A are
included in ()A)+� .

We are now ready to prove B ⧵ A ⊆ ()B)+� . Take any
x ∈ B ⧵A. If x ∈ )B, it is clearly in ()B)+�; let us thereforetake x ∈ B ⧵A and x ∉ )B. Because B ⧵A ⊆ ()A)+� , thereexists y ∈ )A such that d(x, y) ≤ �. In fact, let us take y =
argminy∈)A d(x, y) = argminy∈A d(x, y), which exists by
the compactness of A; recall that the second equality follows

from the argument that any line from any point exterior to
A into A must first pass through )A. Since x ∉ A and A
is compact, we find x ≠ y. Consider a ray starting at y and
passing through x. Because of the compactness of B, this
ray will pass through some z ∈ )B, with x ≠ z. It suffices to
show d(x, z) ≤ � to prove our claim.

We know that d(x, z) ≤ d(y, z), so it suffices to show
d(y, z) ≤ �. Assume by contradiction that d(y, z) > �. Then
because z ∈ )B and )B ⊆ ()A)+� , there exists q ∈ )A
such that d(z, q) < d(y, z) with y ≠ q. We note that
x = �y + (1 − �)z for some � ∈ (0, 1). Hence
d(x, �y+(1−�)q) ≤ (1−�)d(z, q) < (1−�)d(y, z) = d(x, y).

Because of convexity ofA, we have �y+(1−�)q ∈ A, which
contradicts the assumption that y is the closest point in A to
x. Thus we showed d(y, z) ≤ �, which gives d(x, z) ≤ �, and
therefore x ∈ ()B)+� . This proves B ⧵ A ⊆ ()B)+� .

Let us now define C ∶= B ⧵ ()B)+� . We obtain
B ⧵ A ⊆ ()B)+� ∩ B = B ⧵ [B ⧵ ()B)+�] = B ⧵ C,

where we utilized a set identity that expresses an intersection
in terms of complements (see, e.g., [18, p. 30, Thm. 2.19(ii)]).
From this last inclusion, given that C ⊆ B, we obtain C ⊆ A,
which completes the proof.

In Thm. 4.1(v), the quality of the inner approximation
strongly depends on the quality of the trajectory deviation
growth bound used in Cor. 3.1. In practice, the inner approx-
imation is tight for short times from t0 as shown in the next
section, but it is often necessary to reinitialize the inequality
and underlying nominal reachable set when the time differ-
ence becomes too large.

Thm. 4.1 relies on a number of conditions, including
the shared R′-convexity of the multifunctions F and F� , thatmay be difficult to verify for a general nonlinear system. As
mentioned, our approach also seems to work for systems that
do not satisfy these technical assumptions as demonstrated in
Sec. 5.2. Easing these assumptions is a subject of our future
work.

The following proposition shows that, for systems affine
in control, i.e., given by ẋ = f (t, x, u) = fx(t, x) + fu(t, x)u,with fx ∶ ℝ × ℝn → ℝn and fu ∶ ℝ × ℝn → ℝn × ℝm,
the sharedR′-convexity condition holds under some assump-
tions on fu(t, x) for m ≥ n. Affine-in-control dynamics see
widespread use in system modeling and control applications,
e.g., in aerospace vehicles [12, §12.4] and many other me-
chanical systems [30].
PROPOSITION 4.1. (SHARED R′-CONVEXITY) Given R ≥
0, let both U ⊂ ℝm and U� ⊆ U be R-convex. Con-
sider f ∶ [t0,∞) × ℝn × U → ℝn given by f (t, x, u) =
fx(t, x) + fu(t, x)u, where m ≥ n. Let fu(t, x) have full rank
for all (t, x) ∈ ℝ ×ℝn.



Then F (t, x) ∶= f (t, x,U) and F�(t, x) ∶= f (t, x,U�)
are R′-convex, with

R′ ∶= R sup
(t,x)∈[t0,∞)×ℝn

�max(fu(t, x)fT
u (t, x))

√

�min(fu(t, x)fT
u (t, x))

,

where �max and �min denote the minimum and maximum
eigenvalue of their argument, respectively.

Proof. Given the premise, the proof follows by application
of [23, p. 264, Cor. 1] and [23, p. 267, Cor. 9].

In the next section we proceed to illustrate our theory by
way of two numerical examples.
5 Numerical Examples.
We consider two numerical examples: a control system with
quadratic nonlinearities and aircraft wing rock dynamics. We
have chosen low-order systems for ease of exposition; com-
puting an analytical bound for higher dimensional systems is
possible, albeit more cumbersome. We will show how both
Cor. 3.1 and Thm. 4.1 can be applied to these systems. For
both examples, we have used the CORAMATLAB toolkit [2]
to compute the nominal and off-nominal reachable sets. In
practice, the nominal reachable set would be computed prior
to the system’s operation using a similar toolkit. Themethods
used in such toolkits can, however, often not be used online
because of hardware limitations and poor scalability, hence
the need for an approach such as ours.
5.1 Illustrative System with Quadratic Nonlinearities.
Consider the following illustrative affine-in-control system
with quadratic nonlinearities, used in [8, p. 70, Sec. 1.3]:

(5.9) ẋ(t) = f (x(t), u(t)) =
[

2x1
2x2 + 4x21 + x

2
2

]

+
[

1 0
0 1

]

u.

Note that [8] sought to inner approximate the forward
reachable tube of dynamics (5.9), which is the union of
forward reachable sets over a time interval; this means that
our results cannot be compared directly with those of [8]. In
this example, we definemultifunctionF asF (x) ∶= f (x,U),
with U = 0.1 and the impaired control set is Ū = 0.08,with � = dH(U , Ū) = 0.02. Note that we only require an
upper bound on dH(U , Ū) to apply our theory. We take initial
set of states to be X0 = 0.1. In this example, it is evident
that Prop. 4.1 is applicable, and both F (t, x) and F̄ (t, x) are
R′-convex with R′ = 0.1, since both U and Ū are R-convex
with R = 0.1.

We can easily find the following bound on trajectory
deviation growth:

‖f̃ (x̄, ū)‖ = ‖f (x + x̃, u + ũ) − f (x, u)‖

≤ (4 + 10M)‖x̃‖ + 5‖x̃‖2 + 2‖ũ‖,
(5.10)

whereM ∶= maxy∈X→
t (F ,X0)

‖y‖. The above inequality
follows straightforwardly from the triangle inequality. Since
the off-nominal reachable set is guaranteed to be a subset of
the nominal set by Thm. 4.1(iii),M in (5.10) will be an upper
bound for the norm of elements in the off-nominal reachable
set as well.

Since the bound on ‖f̄ (x̄, ū)‖ is strictly increasing in
‖x̄‖ for all ‖ū‖, we can apply Cor. 3.1. Bound �(t, �) can be
straightforwardly found by numerical means. We have used
a combination of Runge–Kutta numerical integration, and
Newton’s method to evaluate G−1, yielding a computation-
ally efficient way of obtaining �(t, �) for use in Thm. 4.1(v).
Comparing this to the symbolic Taylor expansions and ab-
straction error computations required for the computation of
the reachable set in [2], our numerics only rely on simple
floating point operations and function evaluations, agnos-
tic of system order. We evaluate the inner approximations
at times t ∈ {0.1, 0.25, 0.4}, yielding the results shown in
Fig. 1.

To assess the performance of the inner approximation,
we compare the ratio between the volume of the inner ap-
proximated set and the off-nominal set. This gives 96% at
t = 0.1, 83% at t = 0.25, and 29% at t = 0.4. As expected, the
conservative bound on the trajectory deviation growth causes
the inner approximation to shrink over time. Nevertheless,
at times close to the initial time, the inner approximation is
remarkably close to, yet guaranteed to be a subset of, the off-
nominal reachable set.
5.2 Wing Rock. We now raise an example that is relevant
for delta-wing aircraft flying at high angles of attack, where
the aircraft experiences wing rock [3]. This phenomenon
causes the aircraft to roll due to flow asymmetries that arise as
a result of the high angle of incidence of the wingwith respect
to the airflow, causing the aircraft to experience nonlinear roll
damping and limit cycle oscillations [7]. We consider the
following simplified nonlinear wing rock model [7]:
f (x, u) = ẋ =

[

�̇
ṗ

]

=
[

p
�1� + �2p + (�3|�| + �4|p|)p + �5�3

]

+
[

0
�6

]

u,

where � and p denote the roll angle and roll
rate, respectively, and u denotes the aileron de-
flection. The coefficients � are taken as in [7]:
� =

[

−0.018 0.015 −0.062 0.009 0.021 0.75
]T.

Note that in this example, Prop. 4.1 does not hold, and we
cannot make claims about the R-convexity of F (t, x) and
F̄ (t, x); this example serves to show that our theory can also
extend to these relaxed cases, although a formal investigation
is left as future work.

Here, we take U = [−0.175, 0.175] and Ū =
[−0.1663, 0.1488], yielding � = 0.0263. The nominal con-



Figure 1: Nominal and off-nominal reachable sets, as well as the computed inner approximation of the reachable set, for the
example in Sec. 5.1.

trol inputs correspond to aileron deflections of [−10, 10] de-
grees, while the off-nominal control inputs incorporate a 15%
decrease in stick-forward aileron authority, and a 5% de-
crease in stick-backward authority. The initial set of states
is taken to be X0 = [0.2, 0.25]2 to capture a starboard roll
at high roll rate, and the reachable set is evaluated at times
t ∈ {0.1, 0.5, 0.75}.

Deriving the trajectory deviation growth bound follows a
similar approach as in the previous example, with elementary
applications of the triangle inequality; the steps are omitted
here. We obtain
‖f̄ (x̄, ū)‖ ≤ ‖x̄‖

[

1 + |�1| + |�2| + (|�3| + |�4|)(2M + ‖x̄‖)
]

+ |�5|‖x̄‖
3 + |�6|‖ū‖,

where once again we haveM = maxy∈X→
t (F ,X0)

‖y‖.
The reachable set inner approximations obtained for the

wing rock model are shown in Fig. 2. In this case, the ratios
between the volume of the inner approximated set and the
off-nominal set decrease slower than in the first example:
92% at t = 0.1 s, 67% at t = 0.5 s, and 54% at t = 0.75
s. This example shows that adequate inner approximations
can easily be obtained even for comparatively large time
intervals, which should allow for sufficient time for maneuver
planning considering that the time delay and maneuvering
time for roll maneuvers in fighter aircraft adds up to between
1 to 2 seconds [17, p. 86]. In practice, these results could
allow for aircraft to plan steep turns under degraded control
authority, such as partial hydraulics failure of the aileron
actuators or control authority degradation at high angles of
aileron deflection due to flow separation, so as to not enter
potentially unrecoverable regimes of wing rock.
6 Conclusion.
In this work, we have introduced a new technique for effi-
ciently computing an inner approximation to a reachable set,
in case of diminished control authority, given basic knowl-
edge of the trajectory deviation growth as well as a precom-
puted nominal reachable set. We have shown that the ability
to compute these approximations online can have practical
application to control of dynamical systems in off-nominal
conditions. To obtain an inner approximation of the reach-

able set under diminished control authority, we have given
an integral inequality that provides an upper bound on the
minimal trajectory deviation between the nominal and off-
nominal systems. Our approach uses this upper bound on the
minimal trajectory deviation to compute an inner approxima-
tion of the off-nominal reachable set based on the nominal
set. These results can be applied online on systems at a low
computational cost.

We have demonstrated our approach by two numerical
examples: an illustrative control-affine systemwith quadratic
nonlinearities and a wing rock model. The numerical exam-
ples indicate that periodic reinitialization of the reachable set
is required to ensure tightly bounding inner approximations,
with the tightness of the bound being strongly related to the
quality of the trajectory deviation bound.

Going forward, we intend to extend the results of this
work to support bounded changes in off-nominal dynamics,
which will require inner approximations of the interval of ex-
istence of a convex reachable set for the off-nominal system.
Additionally, we plan to investigate the applicability of our
results to multifunctions that only guarantee convexity, and
notR-convexity, such as the example in Sec. 5.2. Along with
this effort, we will develop a control method that drives the
system to a state in the computed inner approximation of the
off-nominal reachable set. One possible avenue for this is by
expressing the inner approximated reachable set as a poly-
topic state constraint, and employing model predictive con-
trol (MPC) to drive the system to this set under the diminished
control input constraints [6, p. 182].
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